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Objective

Explore new numerical and
computer science approaches to
efficiently use EOSPAC within the
context of FleCSALE and reduce
the cost of equation of state (EOS)

table queries



Motivation

« Tabular equation of state (EOS) data are constantly queried by
physics codes

* Queries can occur several times per time-step at each
computational cell for each material that exists at a query
location

* Queries regularly involve expensive interpolations of
thermodynamic quantities

 Thermodynamic quantities are necessary for computation of
additional physical quantities for the simulations

* Reducing the cost of tabular EOS queries provides an overall
reduction in the solution time for many complex physics
problems
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FleCSALE, FleCSI, + EOSPAC

* FleCSALE

— Continuum dynamics code, supports multi-phase fluids and tabular equation of
state (EOS)

—2D/3D cell-centered Eulerian and Lagrangian solver
— 3D FEM Lagrangian solver

 FleCSI

— Compile-time configurable framework designed to support multi-physics
application development

— Supports an MPI and Legion backend

— Primary structure is hierarchical, exposing low-level, mid-level, and high-level
interfaces that are appropriate for different sets of users

« EOSPAC
— Collection of interface routines
— Used to access the SESAME data library
— Can perform various data adjustments and interpolations on the SESAME data
— Inherently serial execution
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Triple Point Problem

* Fluids simulation involving three
different materials

— All materials are ideal gases

* Problem decomposed into four regions

— Left-most and bottom regions: two different
materials at the same density

— Top region: third material at low density
— Middle region: mixed composition & density

Initial Conditions

« All materials can use tabular EOS data S
for the simulations. TR P Y
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Bottlenecks and Strategies

* Initial Bottlenecks:
— Ghost Data Creation
— Material Grouping
— MPI Communication
— Interpolation

- Explored Strategies:
— Software Engineering
— MPI Communication Optimization --- sparse data
— Hybrid Programming --- OpenMP
— GPU Porting with different memory schemes
— Machine Learning
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Software Engineering
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FleCSALE/EOSPAC Linking

« Linking Optimizations:
— Enabled the inversion/storing of modified Sesame tables at the initialization of FleCSALE

— Reformatted FIeCSALE to send common material cells to EOSPAC as groups

Strong Scaling Comparison Relative Speedup
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Sorting in EOSPAC’s Search Algorithm

» Before interpolations, EOSPAC places a stencil on the material table > eos_srchdfy()
» Approach uses an input to eos_srchdf() which gives the first point for the table sweep
* The indexes of the array of points to be interpolated are sorted before sweeping

 Two versions:
— Embedded in EOSPAC

— Inside of FleCSALE
Strong Scaling Comparison Relative Speedup
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Problem-Dependent Performance

» There is potential for enhanced performance from the index sorting
which is problem dependent

« Example: CDSS Scaling Problem (Triple Point)
— Simulation density range = 0 to 3.5
— Sesame table range = 0 to ~61,000
— We only use roughly 20% of the table for this problem

Gas Density (kg/m®)

* Problems with larger property variations are more likely to obtain better
performance with the sorting approach
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Sparse Data Optimization
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Motivation

FlecSALE Weak Scaling
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Sparse Data Optimization

Summary: maire_hydro_2d_triple_eospac.stf

* Weak scaling graph shows huge
communication latency

Total time: 209 sec. Resources: 16 processes, 1 node.

Ratio

This section represents a ratio of all MPI calls to the rest of your code
in the application.

)

 Tracing the application showed B e ey suewa
~74% of the code was MPI B OpenMP - 0 sec 0%
. . B MPI calls - 154 sec
communication calls

« MPI backend in FleCSI uses One
Sided Communication

)
73.7% [] Exclude from total time

Top MPI functions

This section lists the most active MPI functions from all MP| calls in the application.

 MPl_Win_create calls was the

most expensive with ~28% of the ML Win_create e 586500 (281 %)

execution time MPI_Win_complete I 32.4 sec (15.5 %)
MPI_Get

E=——— 21.2 sec (10.2 %)
MPI_Win_free I
[ —

19.4 sec (9.31 %)

MPI_Isend 7.08 sec (3.39 %)

N
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Sparse Data Optimization —Copy removal

Summary: maire_hydro_2d_triple_eospac.stf

Unnecessary copies of data were

Total time: 105 sec. Resources: 16 processes, 1 node.

eliminated
Ratio
This section represents a ratio of all MP| calls to the rest of your code
) i in the application.
» Shared window creation was done

only once with reduction of
MPI_Win_create calls

B Serial Code - 45.4sec 43 %

MPI Communications takes about B OpenMP - 0 sec 0%
~57% B MPI calls - 60 sec 56.9 %

Top MPI functions
Pe rfo rmance I m p roveme nt This section lists the most active MPI functions from all MPI calls in the application.

« Single node ~20%
e Multi node ~40%

MPI_Win_complete NI 416 sec (39.4 %)

MPI_Get [N 11.7 sec(11.1 %)
MPI_Win_wait [ 3.89 sec(3.68 %)
MPI_Win_post [

1.09 sec (1.04 %)

MPI_Win_create | 0.598 sec (0.566 %)

N
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Sparse Data Optimization- MPIl_Datatype

« MPI_Datatype is used for shared
ghost cells to treat as a single
message

Summary: maire_hydro_2d_triple_eospac.stf

Total time: 79.4 sec. Resources: 16 processes, 1 node.

Ratio

This section represents a ratio of all MP| calls to the rest of your code
in the application.

Shared ghost cells

B Serial Code - 45.9sec 57.7 %

MPI_Get and MPI_Win_complete W OpenMP-Osec 0%
B MPI calls - 33.6 sec
calls reduced

MPI Communication takes about
43%

0,
42.2 % [[] Exclude from total time

Top MPI functions

This section lists the most active MPI functions from all MPI calls in the application.

MPI_Win_complete [N 25.2 sec(31.6 %)

* Performance Improvement

MPI_Win_wait [N 3.64 sec (4.57 %)

« Single node ~25% MPI_Get [N 2.27 sec (2.85 %)

« Multi node ~60% MPI_Win_post 1.11 sec (1.39 %)

‘ MPI_Win_create | 0.46 sec (0.577%)
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Performance Analysis

Weak Scaling Comparison 50 Relative Speedup
—=— OQOriginal
10° 1 —m— Copy removal as
—=— MP|_Datatype '
4.0
o
L}
2 35
Q o
€ 10%- >
s 9 3.0
5 2
'g n
3 2.5
o
X
w
2.0
10" -
1.5
! ! ! ! 1.0 I I I
1 4 15 60 238 1 4 15 60 238
MPI Ranks MPI Ranks

« Overall performance improvement ~80%
» Speedup of ~5x
-  MPl_Win_complete is still expensive
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Hybrid programming with OpenMP
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Adding OpenMP in FIeCSALE

* Fork/join model:

Master thread Master thread’

> j}forli'_j Join

Thread 4

< Serial region >/ Parallel region '\< Serial region '>
\ v/ y

« Two OpenMP approaches were investigated:
— tasking;
— for-loop work-sharing.
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Adding OpenMP in Flecsale

« Changes done in: maire hydro/tasks.h

* Mesh: triple_200x81.g

* Flags: -g -O3 -fopenmp

« Compilers: gcc/7.3.0 and intel/18.0.2

« MPI implementation: mpich/3.2.1-intel_18.0.2

» Platform: Intel Haswell --- E5-2698 v3
— Sockets --- 2
— Cores per Socket --- 16
— NUMA Domains --- 2

N
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Performance results

Adding OpenMP in FleCSALE
650

600 (0 o o

?187 550
= ® ® ® OpenMP
@
500 ®
450
| 2 4 8 16 32 64

Number of threads
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GPU Porting for EOSPAC
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Motivation

* FleCSALE queries EOSPAC for ——
interpolated EOS values. Loading £0S

 Profiling revealed Interpolation
was costliest part of FleCSALE,
~15% of simulation.

« Can be parallelized easily.

 GPUs are next generation
hardware for intensive
computations.

* Interpolation is not memory
intensive.

Device code
Interpolation schemes

Host code

Interpolated
EOS values
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Methodology

* Wrapper around Birational
Interpolation kernel and Bilinear
Interpolation kernel that can be Host memory

called inside EOSPAC. Unpinned Mepped pinne:

- No changes to the public o interpolate
interfaces. Only need a separate
library compilation.

* Interpolation algorithms are
called multiple times within a Device memory
single FIeCSALE time-step. GlobalMiemory

 No Memcpy is necessary for the
interpolated values.
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Bilinear Interpolation

« Can be executed by the
hardware using texture
memory.

« Requires the use of 32 hit,
single precision data types

» Use of single precision types
provides an improved
processing throughput of at
least 2x, depending on
architecture

» Texture memory allows us to
store tables in the unified L1
cachel/texture cache

Mapped, pinned
values 10

Ghost Data Results
Interpolate

Texture Memory

Ghost Data

Global Memory

Results
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Speed-up from CUDA

10° Number of elements vs. Time Comparison for Synchronous Memcopies
 — Pascal P100
| wmmmm Broadwell (Serial)
102 A
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Speed-up from CUDA

103 Number of elements vs. Time Comparison for Unified Memory Pt. 1
=== Pascal P100
| — Broadwell (Serial)

Time (s)
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Speed-up from CUDA

103 Number of elements vs. Time Comparison for Unified Memory Pt. 2

| = Pascal P100
|1 === Broadwell (Serial)
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Speed-up from CUDA

103 Number of elements vs. Time Comparison for Mapped, Pinned Memory

mmmm P3scal P100
| — Broadwell (Serial)
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Speed-up from CUDA

Number of elements vs. Time Comparison for All Implementations

103 -
] === CUDA Sync. Memcopy
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Accuracy for Sesame 3720

Relative difference between CUDA and Serial Implementations of BiRational Interpolation

107 . 225 : ‘ 10
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Accuracy for Sesame 3720

Relative difference between CUDA and Serial Implementations of BiRational Interpolation
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Accuracy for Sesame 3720

Relative difference between CUDA and Serial Implementations of BiRational Interpolation
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Machine Learning for EOS Interpolation
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Machine Learning for EOS Interpolation

Goal: Replace calls to EOSPAC with ML regression.

Process:

1. Generate a training dataset using EOSPAC

2. Train the model

3. Characterize the error (compared to EOSPAC)
4. Integrate with FleCSALE

ML Models:
» Kernel Ridge Regression (KRR)
« Random Forest (RF)

»lib C++ Library



Model Framework

Nomenclature: density (d), internal energy (ie), pressure (p), temperature (T),
soundspeed (ss)

Pressure model

* F(d,ie) =p featlures
Temperature model F( 2\ =
X) =y

* F(d,ie,p)=T

Soundspeed model
* F(d,ie,p,T) =ss

labels
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Machine Learning Error Analysis

Random forest vs. Kernel Ridge Regression
« RF is more accurate but much slower

* RF takes ~3GB

KRR takes ~1.5KB

Random Forest 9982 Pressure Actual vs. Predicted e KRR 9982 Pressure Actual vs. Predicted
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KRR Correlation plots
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On-node Performance Comparison

Strong Scaling Comparison Relative Speedup
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Machine Learning Take-aways

« Accuracy and speed tradeoff
« Even with low accuracy, performance is questionable (in this case)

e Other ML models and C++ libraries exist
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Final Results
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* Proper selection of integration options and algorithms within EOSPAC
provide a noticeable speed-up in FleCSALE

« Sparse data optimization with MPI backend shows a significant
improvement about ~5x speed-up

« Initial CUDA results are promising and show a considerable speedup.
However, integration with FleCSALE and host code optimizations are
still required

* Initial machine learning integration did not increase performance, but
other models and libraries could offer improvements
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« Add additional host code optimizations that allow for additional GPU
performance improvements

- Take advantage of additional memory management schemes to further
reduce the memory latency involved with GPU usage

» Study the performance of MPI and Legion backends, with and without
the additional optimizations

 Utilize different parallel programming models within FleCSALE, (e.g.,
MPI + CUDA)

- Explore other types of Target Synchronization techniques for MPI
communication like MPI_Lock, MPI_Unlock.

 Investigate other machine learning libraries (e.g., TensorFlow, MLPACK)
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